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Abstract. Increasing the success rate of a process, i.e. the percentage of
cases that end in a positive outcome, is a recurrent process improvement
goal. At runtime, there are often certain actions (a.k.a. treatments) that
workers may execute to lift the probability that a case ends in a positive
outcome. For example, in a loan origination process, a possible treat-
ment is to issue multiple loan o�ers to increase the probability that the
customer takes a loan. Each treatment has a cost. Thus, when de�ning
policies for prescribing treatments to cases, managers need to consider
the net gain of the treatments. Also, the e�ect of a treatment varies over
time: treating a case earlier may be more e�ective than later in a case.
This paper presents a prescriptive monitoring method that automates
this decision-making task. The method combines causal inference and
reinforcement learning to learn treatment policies that maximize the net
gain. The method leverages a conformal prediction technique to speed up
the convergence of the reinforcement learning mechanism by separating
cases that are likely to end up in a positive or negative outcome, from
uncertain cases. An evaluation on two real-life datasets shows that the
proposed method outperforms a state-of-the-art baseline.

Keywords: prescriptive process monitoring · causal inference · rein-
forcement learning.

1 Introduction

Prescriptive process monitoring is a family of techniques to recommend actions
(herein called treatments) that, if executed, are likely to optimise a process with
respect to one or more process performance indicators [10]. For example, in a
loan origination process, a treatment could be to send an additional loan o�er
with better conditions to a customer who is hesitating to accept a loan. This

⋆ Now at DeepMind.



2 Z. D. Bozorgi et al.

treatment is intended to increase a performance indicator known as the success
rate � the percentage of cases that end in a positive outcome, which in this
context means ending in an accepted loan o�er.

Each treatment has a cost. This cost is often su�ciently high to make it
impractical to treat every case. Furthermore, the e�ect of the treatment might
be di�erent across cases. A treatment that works well for one case, might be
ine�ective on others. Another important aspect of applying treatments is their
timing. Coming back to the loan origination example, sending an additional o�er
later in the process might be less e�ective than sending it earlier.

Previous studies on prescriptive process monitoring propose to produce treat-
ment recommendations by using machine learning models � trained on historical
execution data � to predict the outcome of each case [7, 25]. In particular, rec-
ommending treatments using online reinforcement learning (RL), combined with
predictive models, has shown promising results [12]. However, this prior approach
has two key limitations. First, given that it makes recommendations based on
outcome predictions, it tends to treat cases that are likely to end up in a nega-
tive outcome, even when treating a case is unlikely to switch its outcome from
negative to positive [4]. In other words, this prior approach does not consider
the e�ectiveness of the treatments. The second limitation is concerned with the
use of online RL, which requires learning through trial and error. This means
that the RL agent makes mistakes until it eventually learns to perform well. In
addition, the convergence of the agent may be slow, e.g. the RL agent may need
to see hundreds of cases before converging to a satisfactory treatment policy.

Given the limitations discussed above, in this paper we study the problem
of when-to-treat policies for business processes, where a decision maker-maker
decides, on the �y, when, if at all should a process case receive an outcome-
improving treatment.

This paper proposes an RL method for learning treatment policies for pre-
scriptive process monitoring, which addresses the above problem as follows:

� To take into account the e�ectiveness of the treatments, it incorporates
causal e�ect estimations into the RL process.

� To train the RL agent o�ine, it enhances the available dataset with so-called
alternative outcomes. The enhanced dataset simulates a realistic environ-
ment, so that the RL agent can get feedback on its choices o�ine.

� To speed up the convergence of the RL agent, it leverages a method called
conformal prediction � a predictive modeling method that segregates cases
that are almost certain to �nish in a positive class, from uncertain cases.
Armed with this information, the RL agent is able to avoid treating cases
that most likely will end up in a positive outcome anyway.

The rest of this paper is organised as follows. Section 2 reviews related work.
Section 3 introduces relevant concepts and notations. The proposed method is
discussed in Section 4, while an experimental evaluation is reported in Section 5.
Finally, Section 6 draws conclusion and discusses future work.
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2 Related Work

2.1 Prescriptive Process Monitoring

Kubrak et al. [10] present a survey of prescriptive monitoring methods. This
survey classi�es prescriptive process monitoring approaches into two groups. The
�rst group aims to reduce the defect rate, while the second optimizes quantitative
case performance. This paper falls in the �rst group since we aim to optimise
a binary process outcome. In addition, existing methods can be classi�ed by
their perspective. Most prescribed treatments relate to the resource or control
perspective, but other treatments are also considered. Treatments can be binary,
discrete, or real-valued. This paper abstracts from the type of treatment as long
as it can be represented as a binary variable.

Teinemaa et al. [25] propose a prediction-based system that uses empirical
thresholding to �re alarms when treatment is needed. This work was later ex-
tended by Fahrenkrog-Petersen et al [7], who discovered that �ring the treatment
later some time after the threshold is reached may improve the outcome at lower
cost. Metzger et al. [12] use online RL to learn the best time for triggering treat-
ments. They show that RL outperforms empirical thresholding. These methods,
however, do not address the e�ectiveness of the treatment or make simplistic
assumptions about e�ectiveness. In this paper, we address these limitations.

In another line of work, prescriptive methods are used to recommend the
next best activity. De Leoni et al. [11] prescribe the next tasks to the process
workers helping clients with a job search. Weinzierl et al. [28] prescribe the next
activity predicted to maximize the chance of a positive outcome. In a study by
Batoulis [2], a proactive decision support framework is proposed that forecasts
events and suggests the best action to execute. Another next activity recom-
mender proposed by Nakatumba et al. [13] is based on predictions obtained
from similar cases. Padella et al. [16] provided an explainability framework for
prescriptive analytics of business processes. These works di�er from ours in that
the next best action is not a special treatment, only applied when the case is in
a negative state. But the actions are part of the normal process execution.

2.2 Causal Inference in Process Mining

A number of studies in the �eld of process mining are concerned with discovering
and estimating causal e�ects in processes. Koorn et al. [9] discover the cause-
e�ect relationship between a worker's response to aggressive situations and their
e�ectiveness. In subsequent work, they account for possible confounding vari-
ables [8]. Some approaches use structural equation models to discover root causes
and answer counterfactual questions about undesired outcomes [17, 18]. These
methods are concerned with discovering causal e�ects, while we use causal e�ect
estimation for outcome improvement. Our previous work proposes a rule-based
recommendation method based on causal e�ects to improve process outcomes [3].
In another work, we use causal e�ects to address process duration reduction at
runtime [4]. While our previous studies focus on �nding the best cases to treat,
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in this work, we study when to treat a case. Shoush & Dumas [22] proposed a
prescriptive approach based on both predictive and causal estimates while con-
sidering resource constraints. However, they do not address the when-to-treat
problem based on the uncertainty of the underlying models.

3 Background

This section introduces process mining-related de�nitions used in the rest of the
paper and introduces causal inference, reinforcement learning, and conformal
prediction concepts upon which the proposal relies.

3.1 Process Mining

De�nition 1 (Event, Trace, Event Log). An event is a tuple (a, c, t, (d1, v1),
. . . , (dm, vm)), m ∈ N0, where a is an activity name, c is a case identi�er, t is
a timestamp, and (d1, v1), . . . , (dm, vm) are attribute-value pairs. A trace is a
�nite sequence σ = ⟨e1, . . . , en⟩, n ∈ N, of events with the same case identi�er
in ascending timestamp order. An event log, or log, is a multiset of traces.

De�nition 2 (k-Pre�x). A k-pre�x of a trace ⟨e1, . . . , en⟩, n ∈ N0, is a se-
quence ⟨e1, . . . , ek⟩, 0 ≤ k ≤ n.

De�nition 3 (Sequence encoder). A sequence encoder f : S → X1×· · ·×Xp

is a function that takes a (partial) trace σ and transforms it to a feature vector
X in the p-dimensional vector space X1 × · · · ×Xp with Xi ⊆ R, 1 ≤ i ≤ p.

3.2 Causal Inference

We use the Neyman-Rubin Potential Outcomes Framework [20] for causal infer-
ence. An intervention, or a treatment is an action that can be done during the
execution of a process to optimise the outcome of the case. In this paper, we
consider the binary treatment setting where the treatment is denoted by a binary
variable T ∈ {0, 1}, with T = 1 denoting when the treatment is applied to a case
and T = 0 otherwise. According to the potential outcomes framework, each case
has two potential outcomes: Y (1) denoting the outcome under treatment and
Y (0) the outcome under no treatment. The e�ectiveness of the treatment is not
constant across cases and throughout di�erent points in the case. To measure
the e�ectiveness of the treatment, we use the Conditional Average Treatment
E�ect (CATE):

De�nition 4 (Conditional Average Treatment E�ect). Let X be a set
of attributes that characterize a case. Then, the conditional average treatment
e�ect (CATE) of the case is de�ned as follows:

CATE : θ(x) = E[Y (1)− Y (0) |X = x].

To identify causal e�ects, we make the four standard assumptions in the po-
tential outcomes framework: positivity, ignorability, consistency, and no-interference.
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Assumption 1 (Positivity). Every case has the potential to be selected for
treatment, that is, P (T = t |X = x) > 0, for every treatment t and every vector
x representing a pre�x.

Assumption 2 (Ignorability). Treatment assignment is independent of the po-
tential outcomes conditioned on pre-treatment confounders X: Y (1), Y (0) ⊥⊥
T |X.

Assumption 3 (Consistency). Observations of outcome after treatment selec-
tion are consistent with potential outcomes: Y = Y (t) if T = t for all t.

Assumption 4 (No-interference). Treatment decision for one case does not af-
fect treatment decisions for other cases.

Many approaches for estimating the CATE have been proposed in the liter-
ature. One such method that we use in this work is Causal Forest.

Causal Forest is a causal estimator proposed by Athey et al. [27]. It is an
ensemble of causal trees [1]. Causal trees are a modi�cation of decision trees that
make them suitable for estimating causal e�ects. In decision trees, the splits aim
to separate classes, but in causal trees, they aim to increase the expected causal
e�ect. One major di�erence that distinguishes causal trees from decision trees
is honest splitting. It means that during training, the data is divided into two
sets: one for building the tree and the other for the estimation of the treatment
e�ect after the split. A Causal Forest is constructed by aggregating the results
of many honest causal trees using the subsampling method.

Fig. 1: Realcause potential outcome gen-
eration architecture

Realcause [14] is a method for gen-
erating realistic data with two poten-
tial outcomes. In this paper we keep
the pre�xes real and only generate
two potential outcomes. Figure 1 de-
scribes the architecture of Realcause.
First, a neural network is trained us-
ing all of the data (i.e., pre�xes) to get
a hidden representation. Then sam-
ples under treatment and no treatment are separated and two neural networks
are trained for each group. The activation functions of the latter neural networks
are used to parameterise distributions, which can then be sampled to generate
both potential outcomes for each input sample.

3.3 Reinforcement Learning

Reinforcement learning is a branch of machine learning to train models that
make a sequence of decisions. Typically, an agent is placed in an environment.
It observes a state s and performs an action a from a set of actions in the ac-
tion space, then observes a reward r and the next state s′ as a response to a.
The goal of the agent is to maximise the total cumulative reward. The agent
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typically starts by randomly selecting actions and receiving rewards for those
actions. Through trial and error, it will �gure out which actions in which con-
ditions produce more reward. One of the main problems that the agent faces
while learning is �nding a good trade-o� between exploration and exploitation.
Exploitation means that the agent uses the knowledge already acquired to per-
form actions that are guaranteed to produce a lot of reward. Exploration means
that the agent tries new actions to �nd other potentially rewarding actions. A
good balance between exploration and exploitation is essential for the agent to
discover all the rewarding actions.

3.4 Conformal Prediction

Conformal prediction is a method to generate prediction sets for any predic-
tion model [19]. Given an uncertainty score by a prediction model, conformal
prediction outputs a set of classes that covers the true class with mathematical
guarantees. Below we describe how to construct these prediction sets and what
guarantees they will have.

Suppose we have trained a prediction model f̂ that outputs probabilities for
each prediction class. We use a small set of unseen calibration data of size n
to construct conformal scores si = 1 − f̂(xi)Yi

where f̂(xi)Yi
is the predicted

probability of the true class. Score si is high if the model is very wrong, meaning
that i does not conform to the training data. Next, given s1, . . . , sn we de�ne
q̂ = ⌈(n+ 1)(1− α)⌉/n where ⌈.⌉ is the ceiling function and α is a user-de�ned
error tolerance threshold. Finally, using a separate test set Xtest, we de�ne the
conformal prediction set as C(Xtest) = {y : s(Xtest) ≤ q̂}. In [19], it is shown
that the prediction set is guaranteed to contain the true class with probability
1− α.

4 Methodology

Suppose agent A is responsible for making decisions about treating ongoing
cases.A's job is to consider each case after each event and decide whether to treat
that case or not. At each decision point (after each event), A needs to answer the
following two questions: Will applying the treatment now change the outcome
of the case from negative to positive? How con�dent am I about the outcome
of the case, regardless of treatment? To help A answer these questions, we train
two machine learning models using past process executions: a predictive model
estimating probabilities of each possible outcome and a causal model estimating
the CATE of the chosen treatment. This is the �rst phase of the approach. In the
second phase, we create a realistic environment for A to try di�erent treatment
policies and learn the best one. To do that, we use a generative model to generate
potential outcomes for each pre�x length in such a way that they are statistically
indistinguishable from the actual outcomes. Finally, in the third phase, we let
A learn the best treatment policy through trial and error. We design a reward
function to guide A about when it makes correct or incorrect decisions. Figure 2
provides an overview of our approach. We explain each of the phases below.
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Fig. 2: Overview of the proposed approach

4.1 Model Training

Causal E�ect Estimation To answer A's �rst question, we train a causal
estimator. Di�erent from prediction methods that seek to estimate P (Y |X),
causal estimators estimate CATE : P (Y (1) − Y (0)|X). Typically in the causal
estimation literature, cases are divided into four groups: (a) Persuadables, (b)
Do Not Disturbs, (c) Lost Causes, (d) Sure Things (See Figure 3). Using causal
estimation, we can separate cases into these groups. CATE > 0 describes the
persuadables, CATE < 0 the do not disturbs, and CATE = 0 the sure things
and the lost causes.

Fig. 3: Grouping of cases according to
their response to treatment

Since causal estimators are di�-
cult to evaluate, a point estimate of
the CATE may not be reliable enough
to base treatment decisions on. In-
stead, we train the model to compute
con�dence intervals for CATE. The
model takes a pre�x σk with k ≤ n
where n is the total length of the case
and returns θu,k and θl,k which are the
upper and lower bound for the esti-
mated causal e�ect, respectively, for
a pre�x of length k. We use Causal
Forest [27] to get these con�dence in-
tervals. Causal Forest and orthogo-
nal random forest (ORF) [15] are two
causal estimators that can produce
valid con�dence intervals. We chose causal forest as we have found that it is
quicker to train while having similar performance to ORF when both treatment
and outcome are binary. But generally, our framework is independent of the
chosen causal estimator, as long as it can produce con�dence intervals.
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Conformal Prediction Having a CATE con�dence interval allows agent A to
converge to a good policy. Still, there can exist pre�xes that the causal estimator
is unsure about. For example, when θu,k > 0 and θl,k < 0. So we hypothesise
that if we add an additional rigorous notion of uncertainty, such as conformal
prediction, we can help the agent converge faster. Recall that with conformal
prediction, we can construct prediction sets that are mathematically guaranteed
to contain the true class. For binary outcome prediction, these sets will be one of
the following: (a) {}, (b) {0, 1}, (c) {0}, and (d) {1}. In (a) and (b), the model is
unsure about the outcome. But in (c) and (d), we have a rigorous guarantee that
the case will end up with a negative and positive outcome, respectively. These
correspond to the lost causes and the sure things. Because conformal prediction
tells us that we are con�dent of the outcome based on the information in the
pre�x. So, showing these prediction sets to agent A should help it prune the
search space for pre�xes that need treatment because it will be sure not to treat
the lost causes and the sure things that conformal prediction has identi�ed.

To use conformal prediction, we need to train a predictive model �rst. This
model is a function learned from the data that takes a pre�x σk and returns two
probabilities: pk(1), the probability of a positive outcome at pre�x length k, and
pk(0), the probability of a negative outcome. The predicted class is de�ned as
the class with the highest probability:

p(σk) = Argmax(pk(1), pk(0)) (1)

We use Catboost [6] to train the predictive model as it has been shown to perform
well in recent works [16]. We then apply the conformal prediction algorithm as
described in Section 3.4 to get the prediction sets. Then, we encode the prediction
sets as the con�dence measure ρk that the case will have a positive outcome. If
the prediction set is (c) then ρk = 0, if the prediction set is (d) the ρk = 1, and
if the prediction set is either (a) and (b) then ρk = 0.5.

4.2 Data Enhancement

In online RL, agent A must try di�erent actions in di�erent states to learn the
optimal policy. But since we seek to �nd this policy using data, we need to
simulate the environment in which the agent learns. This environment needs to
be realistic enough to re�ect the information in the data. In this phase, we seek
to generate alternative outcomes that A can later use during learning to evaluate
its knowledge and make decisions accordingly.

Fig. 4: Potential outcomes generation
using generative machine learning

In real-world data, we only ob-
serve one of the potential outcomes
in the Neyman-Rubin framework.
Therefore, we cannot know the true
unit-level causal e�ect. Recently, one
solution has been to use generative
machine learning to produce realistic
data that is statistically indistinguish-
able from the original data. We can
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then use these generative models to get two outcomes for the same feature vec-
tor describing a pre�x: one outcome if T = 1 and another if T = 0. One such
method is called Realcause [14] which uses a generative machine learning model
to generate realistic data including the true causal e�ect. In our previous work [5]
we successfully applied the Realcause method to generate encoded feature vec-
tors describing cases. In this paper, however, we would like to keep agent A's
environment as realistic as possible. Thus, we use Realcause to only generate
potential outcomes for each pre�x of each case (See Figure 4).

Realcause is originally designed to handle independent data points. But in our
method, each data point is a pre�x and pre�xes are parts of cases. So, to guide
the generative model to discover this dependency, we take the following steps: we
include the pre�x number as a feature where for each case, this feature describes
k for each pre�x σk. Next, we convert the case identi�ers to numeric values.
We then include the numeric case ID and pre�x numbers in model training.
As Realcause directly learns the data-generating distribution, it will discover
the relationship between the pre�x numbers 1 . . . n having the same numeric
case ID. We use two multi-layer perceptrons with two hidden layers to model
the treated and untreated groups. We assume a Bernoulli distribution to model
the process outcome. Once the generative model is trained, we can generate an
enhanced event log by sampling the outcome model under both treatment and
no-treatment conditions, giving us both potential outcomes for each pre�x. We
use the enhanced version of the log in the policy selection phase.

4.3 Policy Selection

With two potential outcomes to create the learning environment for A, the next
step is to let A map its knowledge into actions by learning a treatment policy.
A policy is a function π that maps a pre�x σk to an action t. Our goal is
to �nd a policy that maximises a net gain function. To �nd such a policy we
use reinforcement learning. Speci�cally, we use the policy-based RL framework
proposed in [12]. Below, we formulate the learning problem using RL.

As mentioned in Section 3.3, in reinforcement learning, an agent is placed in
an environment and observes states sk which describes the environment at each
pre�x length k. The agent selects an action t from action space T and observes:
the reward r and the next state sk+1. The agent then learns the best behaviour
by trial and error until it reaches the optimal policy for selecting actions. To
translate this learning problem into prescriptive monitoring, we modify the RL-
based approach proposed by Metzger et al. [12]. Similar to them, we de�ne a
binary action space {0, 1} with t = 1 as applying the treatment and t = 0
as not applying it. Metzger et al. describe the state s to the agent as a tuple
s = (δk, γk, k), where δk is the predicted deviation from a positive outcome, γk
is a reliability score for the prediction, and k is the pre�x length. We propose to
modify s to contain the estimated CATE interval and the conformal prediction
score: s = (θu,k, θl,k, ρk, k).

One important aspect of the learning problem is de�ning a suitable reward
function. The goal of agent A in RL is to maximise cumulative rewards. Since we
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consider the best policy to be one that maximises net gain, the most straightfor-
ward reward is the gain or loss that we get at the end of each case. So, we have
decided to incorporate the treatment cost and the bene�t of a positive case into
the reward function. The intuition behind this design choice is that the treat-
ment policy is directly related to the ratio between this cost and bene�t. For
example, if we have a cheap treatment and a high bene�t, we can a�ord to apply
the treatment more frequently, even if we are not certain about its e�ectiveness.
But with an expensive treatment, it becomes more important to carefully select
the cases and times of treatment, and only treat if the agent is sure that the
treatment is necessary and e�ective.

The reward function also needs to contain information about the e�ectiveness
of the treatment at each decision point. Recall that in the data enhancement
phase, we generated Y (1) and Y (0) for each pre�x length of each case. We can
compute Y (1)− Y (0) for each pre�x to obtain the true treatment e�ect at each
decision point. We include this true e�ect in the reward function to guide the
agent about the e�ectiveness of the treatment. We provide the details of the
reward function in Table 1.

True Treatment E�ect

Agent's Treatment Positive Negative Zero

Yes Gain - Cost -Cost-Gain
Negative Outcome: -Cost
Positive Outcome: -Cost

No -Gain Gain
Negative Outcome: 0

Positive Outcome: Gain

Table 1: The proposed reward function

When the agent treats, if the treatment e�ect is positive, we give a reward of
r = Gain − Cost, since we receive the gain of a positive outcome while paying
the cost of treating. If the treatment e�ect is zero, we penalise the agent by
giving it a negative reward of r = −Cost, since the agent wasted the cost of the
treatment and it was ine�ective. If the treatment e�ect is negative, we penalise
the agent by giving it an even lower negative reward r = −Cost − Gain. We
chose this reward because not only did the agent waste the cost of the treatment,
but also caused further damage by treating when it hurt the outcome.

When the agent does not treat, if the treatment e�ect was positive, we pe-
nalise it by giving the reward r = −Gain because the agent failed to act when
necessary. If the treatment e�ect is zero, we look at the outcome. If the outcome
is positive, the agent correctly decided not to apply the treatment and saved the
cost of treatment, so r = Gain. If the outcome is negative, it means that the
case is a lost cause and even treating it would not have changed anything. So,
although the agent was correct in not treating, we give it r = 0 because there
was no gain. Finally, if the treatment e�ect was negative, we give it a strong
positive reward r = Gain because choosing not to treat when the treatment
hurt the outcome caused a positive outcome.

This reward function closely models the net gain achieved by following the
agent's policy, except in three situations. First, if the agent does not treat when
it would have been e�ective, the actual gain is 0, but we penalise the agent with
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−Gain. Second, if the agent treats when its e�ect is negative, we lose the cost of
the treatment, so net gain is −Cost, but the reward is −Cost−Gain. Third, if
the agent treats, and the treatment is ine�ective, and outcome is positive, the net
gain is Gain−Cost, but we give r = −Cost. We added these extra punishments
to signal to the agent that it made incorrect decisions. According to [23], reward
functions often need to be tweaked to speed up learning and convergence, and
to avoid getting stuck in local optima. We found these further punishments are
necessary to speed up the learning process.

We use a separate set of cases for the policy selection phase with timeframes
later than the cases used for model training. The agent learns through a series of
episodes. Each episode corresponds to one case. During each episode, the events
are presented to the agent in the ascending order of their timestamps. At the end
of each episode, we reveal the cumulative reward to the agent. Similar to [12],
we use proximal policy optimization (PPO) [21] as our RL algorithm. We also
represent the policy as a multi-layer perceptron. This network can be used later
as a starting point in real-life situations. Since it has been trained on data with
potential outcomes that are statistically similar to their real counterparts, it will
make fewer mistakes than if the agent starts from scratch.

5 Results

In this section, we explain our experimental setup and report our results. Our
method was developed in Python 3.8. We used the Catboost library for our
predictive model and EconML for the causal forest. The generative model was
developed using Pytorch.

For similar reasons as in predictive process monitoring [26], we use temporal
splitting to simulate the real-life scenario where prediction models are trained on
historical data and then an RL agent learns the best policy by applying interven-
tions on running cases. We split the data into 50%− 50%. The �rst half is used
for training the predictive and causal models, and the second is used for policy
selection using reinforcement learning. We used a temporal splitting, ensuring
that the cases in the model training set whose timeframe overlaps the timeframe
of the policy selection set are removed. The policy selection set was further split
50%− 50%, with the �rst half being used to train the Realcause model and the
second half as direct input to the reinforcement learning component.

We follow the same pre-processing and feature engineering steps for the pre-
dictive, causal, and generative models. We one-hot encode the categorical at-
tributes. For encoding timestamp information, we create the following temporal
features: `time since case start', `time since last event', `time since midnight',
`month', `weekday', and `hour'. Also, to capture the temporal relationship be-
tween cases, we create a feature `time since �rst case', which is a case attribute
denoting the distance between the start of the case and the start of the �rst
case. These temporal and inter-case features are added because they have been
shown to increase performance in prediction models and are common practice
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in both predictive and prescriptive monitoring [10,24]. To pre-process the data,
we standardize the features.

5.1 Datasets

We performed our experiments on two publicly available datasets, namely BPIC12
and BPIC17, and compare our approach with the state-of-the-art method in pre-
scriptive process monitoring [12]. We chose these two datasets because, to the
best of our knowledge, they are the only publicly available datasets with a treat-
ment present in the log that can a�ect the process outcome. Both these logs
contain traces of a loan origination process. We consider the process outcome to
be positive if the customer accepts the loan o�er. Also, usually one loan o�er
is made to each customer. But we observe cases where more than one o�er is
made to the same customer. We observe that the rate of success is higher for
such cases. Hence, we consider multiple loan o�ers to one customer as a pos-
sible treatment. Although these two logs refer to the same process, they have
some di�erences. The BPIC17 log has a considerably larger number of cases and
contains more features. We provide a summary of the log sizes in Table 2.

Log Total Cases
Cases in Model
Training Set

Cases in Realcause
Component

Cases in
RL Component

BPIC12 5015 1967 900 1608

BPIC17 31413 13193 14789 8444

Table 2: Number of cases in the event logs before and after data splitting.

5.2 Performance measure

In this experiment we evaluate the success of each component of our approach
by measuring the following gain function:

NetGain = Y (t) ∗ gain− t ∗ cost, (2)

where t ∈ {0, 1} is the treatment option the agent recommended. The net-gain
measures the amount of money that we gain from each case. Negative net-gain
represents loss. We �rst run our experiment only giving the CATE estimates
θu,k and θl,k to the agent. In the second experiment, we give both the CATE
estimates and the conformal prediction scores ρk to the reinforcement learning
agent. We also compare our approach with the one proposed in [12] as it is
state-of-the-art in addressing the when-to-treat problem. Figure 5 describes the
results for both datasets.

In the �gures above, we consider an expensive treatment. Speci�cally, we
suppose that the bene�t of a positive outcome is $50 and the cost of the treat-
ment is $25. We also experimented with cheap treatments (e.g., $1). But since
cheap treatments do not require a strict policy, we include those results in the
supplementary materials. The x-axis in Figure 5 refers to the cases the agent
decides on, and the y-axis is the net gain for each case. We can see that the
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(a) BPIC 2012 (b) BPIC 2017

Fig. 5: Average net-gain of cases.

agents using the CATE upper and lower bounds outperform the agents that
use predictions about the case outcome. This result is because the agents using
predictions, target cases that end up with a bad outcome. But the agents us-
ing CATE have information about the e�ectiveness of the treatment. They only
treat if they are con�dent it will turn a negative outcome into a positive one.
In other words, they target the persuadables in Figure 3. Also, we observe that
the agent using both conformal prediction score and CATE estimates, converges
faster, empirically proving our hypothesis that conformal prediction can detect
the sure things and the lost causes, thereby pruning the search space for the
agent and helping it make fewer mistakes. This is important if RL is applied
online in a real environment because, without conformal prediction, we observe
that the net gain is negative for the �rst few hundred cases.

We ran two versions of the baseline. The �rst (shown in green) uses the
reward function proposed in [12]. In the second version (shown in red), we adapt
the baseline to use our proposed reward function (Table 1). We can see that
in the BPIC17 dataset, the baseline is unstable. This is because in some cases,
the predictive information that the agent has matches the e�ectiveness of the
treatment, so the agent correctly decides to treat. But other times, it treats when
the treatment is needed but ine�ective. But when using our proposed reward
function, we see a slow improvement in performance. This is because the agent
is slowly learning to be more selective about when to apply the treatment through
the reward function. But the description of its environment (the prediction and
its reliability) does not have enough signal to converge faster. In the BPIC12
dataset, both versions of the baseline produce negative net gain. This is because
this log is considerably smaller than the BPIC17 log. So the agent does not see
enough samples to discover a policy producing a positive net gain.

We also experimented with the intuitive reward function that does not con-
tain any further punishments for the agent's wrong decisions (see Section 4.3).
However, we found that this reward function does not produce good results.
This is because this reward function does not have enough signal for the agent
to distinguish between correct and incorrect decisions, leading the agent to
treat unnecessarily. This problem can be addressed by adjusting the explo-
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ration/exploitation rate of the agent. That said, since we are using an algorithm
(PPO) that does not allow manual adjustment of this rate, we leave that for fu-
ture work. The results of this experiment and the speci�cations of the alternative
reward function can be found in the supplementary materials.

5.3 Statistical Tests on Enhanced Logs

In this section, we evaluate the quality of our generated potential outcomes. To
this end, we ran a few statistical two-sample tests. We tested the hypothesis that
the generated and real outcomes come from di�erent distributions and report
the p-values. Any p-value above 0.05 indicates that the test cannot conclude that
the two samples come from di�erent distributions. We use the same tests that
we did in [5] and report the results in Table 3. It can be seen that all p-values
are above the 0.05 threshold, meaning that none of the tests can detect that the
enhanced and real outcomes come from di�erent distributions.

Kolmogorov
Smirnov

Epps
Singleton

Friedman
Rafsky

k-Nearest
Neighbor

Energy
Wasserstein

1
Wasserstein

2

BPIC12 0.244 0.311 0.109 0.088 0.228 0.323 0.329

BPIC17 1.0 0.996 0.647 0.359 0.92 0.916 0.87

Table 3: Table of p-values for statistical tests

5.4 Threats to Validity

The use of only two datasets in the experiments poses threats to external va-
lidity. While both datasets come from real-life sources, they both relate to the
same type of process (loan origination). It may be that the proposed technique
performs di�erently on less structured processes, for example, in healthcare pro-
cesses. A threat to internal validity is that we synthetically enhanced the logs
with potential outcomes. The quality of these potential outcomes depends on
the quality of the input data. We mitigated this threat by applying statistical
tests on the enhanced logs as reported above. Another internal validity threat
stems from the fact that we treat cases as independent entities, while cases are
inter-dependent due to shared resources. We mitigated this threat by including
inter-case features in the predictive and causal estimators, but there may still be
inter-case dependencies between not captured by these features. The use of ob-
servational data to estimate CATEs creates a threat to construct validity. When
some confounders are not present in the dataset, CATE models reduce bias com-
pared to purely correlation-based methods, but they do not eliminate it. Another
threat to construct validity stems from the fact that we run one RL episode per
case. At each step in a case, we use information about the case outcome to re-
ward the agent. Thus, in the presence of long cases in the log, the agent gets
exposed to information about the future. To mitigate this threat, we sorted the
cases by their end timestamp to reduce data leakage. Also, we excluded any case
information in the description of the environment. The agent only sees CATE
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estimates, conformal prediction scores, and pre�x numbers. However, since these
estimates and scores are derived from models using case information, the agent
might still be indirectly exposed to future information.

6 Conclusion

This paper introduced a method to learn policies to prescribe treatments to cases
of a business process to maximize the net gain generated by such treatments. The
proposed method enhances an existing online RL method by: i) feeding causal
e�ect estimates to obtain a higher net gain to prevent ine�ective treatments;
ii) using conformal predictions to speed up the convergence of the RL agent;
and iii) using a causal dataset enhancement method to simulate an environment
where the RL agent can be trained o�ine.

In the proposed method, each learning episode is one case. This approach
potentially exposes the agent to information that is only known in the future,
since cases may overlap in time (data leakage). A natural improvement of this
work would be to change the notion of episodes to prevent such leakage. For
instance, each episode could be all the events across multiple cases that occur
on the same day. The di�culty here is �nding a suitable time-step to make good
use of the available dataset. Further directions for future work include expanding
this approach to optimise continuous targets such as cycle time and considering
resource availability when recommending treatments. Another direction is to
investigate other RL algorithms and their potential advantages/disadvantages
over PPO. One can also investigate di�erent exploration/exploitation rates to
measure their impact on performance.
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